2025-06-08

Materials, Vol. 18, Pages 2700: On the Origin of Thermally Enhanced Upconversion Luminescence in Lanthanide-Doped Nanosized Fluoride Phosphors

Shirun Yan

Materials

Thermally enhanced upconversion luminescence (UCL), also known as negative thermal quenching of UCL, denotes a continuous increase in the UCL emission intensity of a particular phosphor with a rising temperature. In recent years, the thermal enhancement of UCL has attracted extensive research attention, with numerous reports detailing this effect in phosphors characterized by varying particle sizes, architectures, and compositions. Several hypotheses have been formulated to explain the underlying mechanisms driving this thermal enhancement. This paper rigorously examines thermally enhanced UCL in fluoride nanoparticles by addressing two key questions: (1) Is the thermal enhancement of UCL an intrinsic feature of these nanoparticles? (2) Can the proposed mechanisms explaining this enhancement be unequivocally supported by the existing literature? Upon analyzing a compilation of experimental observations alongside the concurrent phenomena occurred during spectral measurements, it is postulated that thermally enhanced UCL intensity is likely a consequence of multiple extrinsic factors operating simultaneously at elevated temperatures, rather than being an intrinsic property of nanoparticles. These factors include moisture desorption, laser-induced local heating, and lattice thermal expansion. The size-dependent properties of nanoparticles, such as surface-to-volume ratio, thermal expansion coefficient, and quantum yield, are the fundamental reasons for the size-dependent thermal enhancement factor of UCL. Temperature-dependent emission spectral intensity is not a dependable indicator for assessing the thermal quenching properties of phosphors. This is because it is influenced not only by the phosphor’s quantum yield, but also by various extrinsic factors at high temperatures. The nonlinear nature of UCL further magnifies the impact of these extrinsic factors.

Ver articulo completo

DOI

← Volver a los posts