Submitted on 5 Jun 2025

ContentV: Efficient Training of Video Generation Models with Limited Compute

Authors:Wenfeng Lin, Renjie Chen, Boyuan Liu, Shiyue Yan, Ruoyu Feng, Jiangchuan Wei, Yichen Zhang, Yimeng Zhou, Chao Feng, Jiao Ran, Qi Wu, Zuotao Liu, Mingyu Guo

Computer Vision and Pattern Recognition (cs.CV)

Abstract:Recent advances in video generation demand increasingly efficient training recipes to mitigate escalating computational costs. In this report, we present ContentV, an 8B-parameter text-to-video model that achieves state-of-the-art performance (85.14 on VBench) after training on 256 x 64GB Neural Processing Units (NPUs) for merely four weeks. ContentV generates diverse, high-quality videos across multiple resolutions and durations from text prompts, enabled by three key innovations: (1) A minimalist architecture that maximizes reuse of pre-trained image generation models for video generation; (2) A systematic multi-stage training strategy leveraging flow matching for enhanced efficiency; and (3) A cost-effective reinforcement learning with human feedback framework that improves generation quality without requiring additional human annotations. All the code and models are available at: this https URL.

Ver articulo completo

DOI

← Volver a los posts