2025-06-09
Pharmaceutics, Vol. 17, Pages 762: Automated 3D Printing-Based Non-Sterile Compounding Technology for Pediatric Corticosteroid Dosage Forms in a Health System Pharmacy Setting
M. Brooke Bernhardt, Farnaz Shokraneh, Ludmila Hrizanovska, Julius Lahtinen, Cynthia A. Brasher, Niklas Sandler
Background: Pharmaceutical compounding remains a predominantly manual process with limited innovation, particularly in non-sterile applications. This study explores the implementation of an automated compounding platform based on 3D printing to enhance precision, efficiency, and adaptability in pediatric corticosteroid formulations. Methods: Personalized hydrocortisone dosage forms were prepared in a hospital pharmacy setting using a proprietary excipient base and standardized procedures, including automated dosing and syringe heating when required. Three dosage forms—3.2 mg gel tablets, 2.8 mg water-free troches, and 1.2 mg orodispersible films (ODFs)—were selected to demonstrate the platform’s versatility and to address pediatric needs for varying strengths and dosage types. All products were prepared using a reproducible semi-solid extrusion (SSE)-based workflow with the consistent API-excipient blending and automated deposition. Results: Analytical testing confirmed that all formulations met pharmacopeial criteria for mass and content uniformity. The ODF and troche forms achieved rapid drug release, exceeding 75% within 5 min, while the gel tablet showed a slower release profile, reaching 86% by 60 min. Additionally, in-process homogeneity testing across syringe printing cycles confirmed the consistent API distribution. Conclusions: The results support the feasibility of integrating automated compounding technologies into pharmacy workflows. Such systems can improve accuracy, minimize variability, and streamline the production of customized pediatric medications, particularly for drugs with poor palatability or narrow therapeutic windows. Overall, this study highlights the potential of automation to modernize non-sterile compounding, and to better support individualized therapy.