2025-06-05

Sustainability, Vol. 17, Pages 5228: Bi-Level Interactive Optimization of Distribution Network–Agricultural Park with Distributed Generation Support

Ke Xu, Chang Liu, Shijun Chen, Weiting Xu, Chuan Yuan, Dengli Jiang, Peilin Li, Youbo Liu


The large-scale integration of renewable energy and the use of high-energy-consuming equipment in agricultural parks have a great influence on the security of rural distribution networks. To ensure reliable power delivery for residential and agricultural activities and sustainable management of distributed energy resources, this paper develops a distributed generation-supported interactive optimization framework coordinating distribution networks and agricultural parks. Specifically, a wind–photovoltaic scenario generation method based on Copula functions is first proposed to characterize the uncertainties of renewable generation. Based on the generated scenario, a bi-level interactive optimization framework consisting of a distribution network and agricultural park is constructed. At the upper level, the distribution network operators ensure the security of the distribution network by reconfiguration, coordinated distributed resource dispatch, and dynamic price compensation mechanisms to guide the agricultural park’s electricity consumption strategy. At the lower level, the agricultural park users maximize their economic benefits by adjusting controllable loads in response to price compensation incentives. Additionally, an improved particle swarm optimization combined with a Gurobi solver is proposed to obtain equilibrium by iterative solving. The simulation analysis demonstrates that the proposed method can reduce the operation costs of the distribution network and improve the satisfaction of users in agricultural parks.

Ver articulo completo

DOI

← Volver a los posts